Alan Turing: The Enigma: The Book That Inspired The Film "The Imitation Game"
A NEW YORK TIMES BESTSELLER
The official book behind the Academy Award-winning film The Imitation Game, starring Benedict Cumberbatch and Keira Knightley.

It is only a slight exaggeration to say that the British mathematician Alan Turing (1912-1954) saved the Allies from the Nazis, invented the computer and artificial intelligence, and anticipated gay liberation by decades--all before his suicide at age forty-one. This New York Times best-selling biography of the founder of computer science, with a new preface by the author that addresses Turing’s royal pardon in 2013, is the definitive account of an extraordinary mind and life. Capturing both the inner and outer drama of Turing’s life, Andrew Hodges tells how Turing’s revolutionary idea of 1936--the concept of a universal machine--laid the foundation for the modern computer and how Turing brought the idea to practical realization in 1945 with his electronic design. The book also tells how this work was directly related to Turing’s leading role in breaking the German Enigma ciphers during World War II, a scientific triumph that was critical to Allied victory in the Atlantic. At the same time, this is the tragic account of a man who, despite his wartime service, was eventually arrested, stripped of his security clearance, and forced to undergo a humiliating treatment program--all for trying to live honestly in a society that defined homosexuality as a crime. The inspiration for a major motion picture starring Benedict Cumberbatch and Keira Knightley, Alan Turing: The Enigma is a gripping story of mathematics, computers, cryptography, and homosexual persecution.

Book Information

File Size: 6674 KB
Print Length: 762 pages
Page Numbers Source ISBN: B01HP0CLZO
Publisher: Princeton University Press; Updated edition with a New preface by the author edition (November 10, 2014)
Publication Date: November 10, 2014
Language: English
ASIN: B00M032W92
Text-to-Speech: Enabled
X-Ray: Enabled
Word Wise: Enabled
Lending: Not Enabled
Enhanced Typesetting: Enabled
Without this book, the real Alan Turing might fade into obscurity or at least the easy caricature of an eccentric British mathematician. And to the relief of many, because Turing was a difficult person: an unapologetic homosexual in post-victorian england; ground-breaking mathematician; utterly indifferent to social conventions; arrogantly original (working from first principles, ignoring precedents); with no respect for professional boundaries (a ‘pure’ mathematician who taught himself engineering and electronics). His best-known work is his 1936 ‘Computable Numbers’ paper, defining a self-modifying, stored-program machine. He used these ideas to help build code-breaking methods and machinery at Bletchley Park, England’s WWII electronic intelligence center. This work, much still classified today, led directly to the construction of the world’s first stored-program, self-modifying computer, in 1948. Computers were always symbol-manipulators to Alan, not ‘number crunchers’, the predominant view even to von Neumann, and into the 60’s and 70’s. He designed many basic software concepts (interpreter, floating point), most of which were ignored (he umm wasn’t exactly good at promoting his ideas). By 1948 Alan had moved on to studying human and machine intelligence, as a user of computers, again with his lack of social niceties and radical thinking, some of his ideas were baffling or embarrassing until ‘rediscovered’ decades later as brilliant insights into intelligence. His ‘Turing test’ of intelligence dates from this period, and is still widely misunderstood.

Without this book, the real Alan Turing might fade into obscurity or at least the easy caricature of an eccentric British mathematician. And to the relief of many, because Turing was a difficult person: an unapologetic homosexual in post-victorian england; ground-breaking mathematician; utterly indifferent to social conventions; arrogantly original (working from first principles, ignoring precedents); with no respect for professional boundaries (a ‘pure’ mathematician who taught himself engineering and electronics). His best-known work is his 1936 ‘Computable Numbers’ paper, defining a self-modifying, stored-program machine. He used these ideas to help build code-breaking methods and machinery at Bletchley Park, England’s WWII electronic intelligence center. This work, much still classified today, led directly to the construction of the world’s first stored-program,
self-modifying computer, in 1948. Computers were always symbol-manipulators, to Alan, not 'number crunchers', the predominant view even to von Neumann, and into the 60's and 70's. He designed many basic software concepts (interpreter, floating point), most of which were ignored (he wasn't exactly good at promoting his ideas). By 1948 Alan had moved on to studying human and machine intelligence, as a user of computers, again with his lack of social niceties and radical thinking, some of his ideas were baffling or embarrassing until 'rediscovered' decades later as brilliant insights into intelligence. His 'Turing test' of intelligence dates from this period, and is still widely misunderstood.

Download to continue reading...


Dmca